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Abstract

Waveform tomography uses the original
waveform recordings and wave equation mod-
elling to extract high resolution tomographic
images from seismic data. Theoretical and
synthetic studies support the conclusion that
waveform tomography can potentially image
features at sub-wavelength scales.

Introduction

In this talk I will review the theory and prac-
tice of Waveform Tomography (also referred
to as Full Waveform Inversion or Diffraction
Tomography). Many current tomographic
methods use the arrival time information, ex-
tracted from the original waveform record-
ings either by manual or automatic, cross-
correlation based methods; I refer to these
methods generically as traveltime tomography
methods. Waveform tomography differs from
more common methods of tomographic inver-
sion in two major aspects:

• The input data consist of the seismic
waveforms themselves (as opposed to
traveltimes, amplitudes or some other
secondary attribute of the recorded data)

• The underlying numerical method is
based on the full wave equation (as op-
posed to a ray approximation or a Born
approximation)

The features above make waveform tomogra-
phy less approximate and consequently bet-
ter resolved than traveltime tomography. The
same features also make algorithms for wave-
form tomography more difficult to develop,
less robust and more expensive to use than
traveltime tomography. As we shall see, it

is generally impossible to proceed with wave-
form tomography without first carrying out
traveltime tomography in order to establish
a starting model.

In this presentation I will review the funda-
mental issues of scale that control the resolu-
tion of traveltime methods, I will briefly state
the physical and numerical principles used
in the development of waveform tomography
and I will provide some synthetic studies that
illustrate both the advantages and potential
pitfalls in waveform tomography. I will con-
clude with a brief review of a number of cross-
hole tomography case studies in which wave-
form tomography has made a demonstrable
contribution to the state of geological knowl-
edge of the target.

Scales, wavelengths and Fresnel zones

The characteristic length scale for a seismic
wave is its wavelength, λ related to the fre-
quency, f by the fundamental relationship

λ =
c

f
, (1)

in which c is the propagation velocity of the
wave. The general rule is that the high fre-
quencies are lost most rapidly to friction dur-
ing propagation. Thus, we never seem to have
small enough wavelengths: the further the
waves travel, the less short wavelength energy
there is. Wavelength of course is a critical
factor in understanding the spatial resolution
of a given method; we generally accept from
the outset that the tomographic images we
obtain will be limited by the wavelength in
some way.

A second, less widely appreciated control
on the resolution of tomographic methods is
propagation distance. The further a seis-



mic wave travels after encountering a veloc-
ity anomaly, the less evident the effect of the
anomaly on the wavefronts. Due to diffrac-
tion effects, the wavefronts tend to “heal”,
gradually erasing the effect of the original dis-
turbance. The effect of wavefront healing is
that a second scale parameter, the width of
the first Fresnel zone also plays a role in lim-
iting the resolution. This scale parameter is
given by √

λL, (2)

where L is the propagation distance the wave
travels from source to receiver. The Fresnel
zone can be thought of as defining an effec-
tive “ray-width”, implying that structure far
away from the ray path can still influence the
wavefronts (e.g., Nolet 1987). The influence
of this effect on the resolution of traveltime
tomography has been evaluated theoretically
by Williamson (1991) and Schuster (1996),
and further tested numerically by Williamson
and Worthington (1993).

Mathematical physics of tomography

An interesting comparison of traveltime and
waveform tomography can be made by con-
sidering the following two expressions: for
traveltime, ray-based methods we may ex-
press the relationship between an anomaly in
the slowness field, δs(x) and the traveltime
anomaly δT (r, s) between a source at s and a
receiver at r as

δT (r, s) =
∫

d3x s(x) Lo(x; r, s), (3)

where Lo is a thin, pencil-like path through
the media representing the ray path. For
waveform tomography the relationship be-
tween the anomaly in the squared slowness
field and the “scattered wave”, Usc(r, s; ω) at
a frequency, ω is given by

Usc(r, s; ω) =
∫

d3x s2(x)Lo(x; r, s), (4)

where Lo is a Fresnel-like volume connecting
source to receiver, referred to as a wavepath

Woodward (1992). The similarity of these
two linear integral equations suggests a uni-
fied discrete representation

d = Am, (5)

where d are the measured data (either trav-
eltime anomalies or waveform anomalies), m
are the model parameters, and the matrix A
is a discrete representation of the integration
kernels in either equation (3) or (4).

Inversion of the linear system in equation
(5) is carried out by iterative methods, of
which the conjugate gradient method is one
of the most effective. In the conjugate gradi-
ent method repeated iterations of the form

m̂k = m̂k−1 + αk−1 AT δd

are carried out, where αk is the step length at
the kth iteration. The quantity AT δd has a
specific meaning in each of the two different
cases:

1. In traveltime tomography this calculates
the backprojection of the traveltime resid-
uals.

2. In waveform tomography this calculates
the backpropagation of the waveform
residuals.

Synthetic example

I illustrate a test of the waveform tomogra-
phy approach in Figure 1: A velocity model
containing a random spatial distribution of
velocity anomalies was computed numerically
(courtesy of Alan Levander and Colin Zelt);
synthetic waveform data were generated for
this model using a finite difference approach.
The survey simulated a crosshole geometry,
with 101 sources and 101 receivers. Typi-
cal crosshole scale parameters were used: the
dominant frequency of the experiment was
approximately 300 Hz, leading to a dominant
wavelength of approximately 10 m. Wave-
lengths and the first Fresnel zone width are



shown in Figure 1. Traveltimes were picked
manually from the waveforms arising in this
model, and traveltime tomography using the
methods of Zelt and Barton (1998) was used
to create a starting velocity model (Figure 1,
middle).

The resolution of the traveltime tomogram
was somewhat better than the predicted Fres-
nel zone width, but much worse than the size
of the dominant wavelength. Waveform to-
mography methods were then used to extract
a velocity model (starting from the traveltime
result) that captured most of the small scale
variation of the true model, at better than
wavelength scales.

Crosshole examples

Waveform tomography has been successfully
applied to crosshole seismic waveforms in
a wide variety of geological environments.
Examples have been published from scale
model experiments (Pratt, 1999), sedimen-
tary environments (Song et al., 1994; Pratt
and Shipp, 1999), and most recently from a
sub-permafrost investigation of arctic gas hy-
drates (Pratt et al., 2004). The images in
Figure 2 are an example from a site investi-
gation study in crystalline rocks (Albert et
al., 1999).
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Fig. 1: Results with a random velocity model. Left: the “true” velocity model, middle: the traveltime
tomography results and right: the waveform tomography results.

(a) (b)

Fig. 2: Data example from crystalline rock. Crosshole seismic surveys were carried out between three
horizontal boreholes in a site investigation survey for the storage of radioactive waste. a) is the
traveltime tomography image, and b) is the waveform tomography image.


