
Guide to Installing and Using FISHES

Kayla C. Lewis

May 22, 2009



1 Purpose

The following sections are intended to constitute a practical guide to installing

and using FISHES. Readers interested in the underlying theory should consult

[LL09], [Pat80], and [Lew07].

1.1 Installation

FISHES is written in FORTRAN 90, and the programs mentioned in this guide

for analyzing the output of FISHES require Matlab c©1. The code is compati-

ble with the free FORTRAN 90/95 compilers g95 and gfortran, which can be

gotten from http://www.g95.org and via the “synaptic” package manager in de-

bian/ubuntu, respectively; it has also been successfully compiled and run using

the Intel c© FORTRAN compiler, ifort. It is recommended that one of these

compilers be used, because different FORTRAN compilers have minor differ-

ences that can lead to a program compiling on one of them but not another.

There are g95 binaries at the above-mentioned website for linux, solaris, win-

dows, etc, and one can even compile the compiler itself from source code if one

wishes – see the website for details. In linux, g95 uses the GNU C compiler gcc,

and if there are any problems getting g95 to work, it is most likely because one

is lacking the correct version of gcc. Regarding Matlab, it is recommended that

Matlab 7 or later be used.

Once Matlab and the FORTRAN compiler have been installed, it is time

to install FISHES and the auxiliary programs that come with it. Simply unzip

the file fishes.zip in your chosen directory. After you have unzipped the file,

it may be necessary to change the user permissions on the resulting files and

directories to allow the user to copy, edit, or read files (for unix/linux, use the

chmod command).

Before running FISHES (or any of the auxiliary programs that come with

it) for the first time, it is necessary to compile it for the particular machine

on which it will run - that is why g95 or ifort is needed. For unix/linux users

1We plan to switch to python plotting utilities in the near future.

2



(I will assume that the users are employing linux or unix hereafter), there is a

script in the FISHES directory called “FishComp”, and it will compile FISHES

with the proper parameters, rename the compiled file from “a.out” to “fishes”,

and move the result to the run directory, which is where FISHES must execute,

because all the input files and data files for the equations of state are located

there. Edit the script and uncomment the lines appropriate for the compiler

you plan to use. The script can be executed by typing ./FishComp from the

FISHES directory. After the file “fishes” has been created in the run directory,

one may need to go there and type chmod 711 fishes, to apply the right file

permissions. Subsequently, to run FISHES itself, one can simply type ./fishes

from the run directory.

2 User Input Files

When FISHES runs, it reads the information in the files InFile0 and InFile1

to determine the problem geometry, the initial and boundary conditions, and

other simulation controlling variables like the time step, iteration tolerances,

etc. These user-defined variables will now be described, and they will each be

printed in bold to facilitate ease of reference.

2.1 InFile0

A simple example of an InFile0 is in the FISHES/run/ directory (there is also

a backup of this file, InFile0.example, in case the user would like to review this

material later after having replaced the original example files). This file can

be read with one’s favorite text editor (the authors choice is vim, with syntax

highlighting turned on). Regarding units in these files, SI units are used exclu-

sively, except that salinity is in wt% NaCl and not wt fraction NaCl (although

internally FISHES converts the input salinities from wt% to wt fractions).

The first variables in the file are NumNodesX, NumNodesY, and

NumNodesZ - these are the number of nodes in the X (west-east), Y (north-

3



south), and Z (up-down) directions. FISHES is currently only designed to han-

dle up to two dimensions, so that Y should always be set to 1. In this example,

there are 100 nodes total, with 10 nodes from west to east and 10 nodes from

top to bottom. The variable SuppressScreenMessages should be set to Y if

one wishes to run FISHES as a background process and does not want FISHES

to send output to the screen while running; otherwise, this variable should be

set to N.

The next line starts with the variable TimeStepIncr. This variable is

for situations such that the user wants the time step to increase with time

as the code runs – sometimes many changes happen quickly at once when a

simulation starts, and the time step should be set comparatively small during

these times, while later it may be possible to obtain meaningful results with a

higher time step. For example, setting TimeStepIncr to 2 will double the time

step size after each time marching step completes. Setting TimeStepIncr to 1

keeps the time step the same (i.e., multiplies it by 1 after each time marching

step), and this value is the standard one. The code will not allow the time

step to increase to more than ten times its initial value2 due to application of

TimeStepInc. Dispersivity and CorrelationLength are there for modeling

mechanical salt dispersion, but currently the code has numerical dispersion in

the salt transport large enough such that physical dispersion should not be

added, and the Dispersivity should be set to zero3. These variables are there in

case the author decides to increase the accuracy of salt transport in the future.

MassFluxGradual should be set to N unless one wants to have the mass

flux at the bottom of the system increase gradually with time. If this variable

is set to Y, then the next three variables must also be specified, namely, the

starting mass flux, the ending mass flux (both in kg/m2s), and the interval of

time over which this increase should take place (in seconds)4.

2That is, the time step corresponding to the latest user defined interval, see TotalTime,

PrintFreq, and Delta t below.
3When the Dispersivity is set to zero, the value of CorrelationLength is immaterial.
4If MassFluxGradual is set to N, the values of the next three variables are immaterial.

4



TempRelax, PresRelax, and SaliRelax are for if one wants to use under-

relaxation on the temperature, pressure, or salinity during simulations. Under-

relaxation slows the rate at which variables evolve with time by requiring the

new values to be closer to the old values. Setting TempRelax to 0, for instance,

would keep the temperature from changing with time at all, while setting it to 1

would cause the temperature to evolve normally. Numbers between 0 and 1 will

have intermediate effects. An important thing to keep in mind is that, because

under-relaxation causes variables to evolve more slowly in time than they oth-

erwise would, it will be necessary to increase the TimeCalibration variable

above 1 in there is a significant degree of under-relaxation. TimeCalibration

should always be set to a whole integer value, and the number to which it is set

is the number of extra times FISHES will solve the temperature, pressure, and

salinity equations before letting simulation time pass. If one sets TempRelax,

PressRelax, and SaliRelax all to 1.D-1, then setting TimeCalibration to about

10 will produce results that evolve at roughly the same overall rate that they

would without under-relaxation. No under-relaxation is required for most cases.

The variable TimeStepCheck determines whether the code automatically

checks the appropriateness of the time step size. If the velocity of a fluid phase

somewhere in the system is high enough that the fluid traverses more than one

control volume during a single time step, the code will both produce a warning

and divide the time step by two. The code take similar actions if the line-by-

line matrix solver cannot reach a convergent solution for the pressure or the

temperature5.

RockDens, CpRock, RockThermCond, and Grav are the variables that

store the rock density, rock specific heat at constant pressure, rock thermal con-

ductivity, and gravitational acceleration, respectively. HaliteDens, CpHalite,

FluidThermCond, and SaltChemDiff store the halite (solid salt) density,

halite specific heat, fluid thermal conductivity, and salt chemical diffusivity, re-

spectively. CpHalite is not currently used for anything in the code it is there for
5The system of equations governing salt transport does not need to be solved iteratively

(see [LL09]).

5



if the author decides to include the formation of halite in a more rigorous way in

the future. XNodeWidths, YNodeWidths, and ZNodeWidths store the

node widths in the X, Y, and Z directions. The C stands for “Constant” and

means that the number below it will be the value for every node in the corre-

sponding direction. For instance, in this InFile0, all the nodes in the X direction

are set to a width of 10 meter, while all those in the Z direction are set to widths

of 10 meters. Alternatively, F stands for Free and when there is an F, all the

numbers listed below are read into individual nodes. For example, suppose that

the X widths line were as follows: Node widths in the x direction(m)

F

0.1

1.0

1.0

In this case, the western-most nodes would have west-east widths of 0.1 meters,

while next two columns would have west-east widths of 1.0 meter.

Porosity and Permeability, Temperature, Pressure, and Salinity all

store the initial values of the variables after which they are named (Salinity

refers to the bulk salinity). Again, a C means that all the nodes will be set to

the constant value of the number immediately below C. For instance, all the

nodes have been set to have a porosity of 0.1 (or 10%). The pressures, on the

other hand, are set using the F descriptor, and the pressure values are listed

afterward corresponding to the nodes in which they will be stored. The last

variables in InFile0 allow the user to specify different print frequencies and time

step sizes for different intervals of simulation time. The number under “Number

of time periods below to execute before stopping” refers to the number of such

predefined intervals the user desires to employ. In this example, there is only

one such period. The variables TotalTime, PrintFreq, and Delta t refer to

the simulation time interval, print frequency, and time step size, respectively.

In this example, the simulation will run for 1.61E7 s (∼0.5 yrs), printing output

every 3.2E6 s (∼0.1 yr), with a time step size of 1.E5 s.

6



2.2 InFile1

InFile1 contains information specifying the types of boundary conditions and

the boundary values for solving the temperature, pressure, and bulk salinity

equations. FISHES recognizes four types of nodes: constant boundary, flux

boundary, upwind boundary, and interior nodes. A constant boundary node is

a node that is both on the boundary of the system and that is to be held at a fixed

value for the entire simulation, and such node types are designated with a C. A

flux boundary node is a node that is both on the boundary and that specifies

a constant flux for the entire simulation. It is signified by the letter F. Upwind

boundary nodes are nodes on the boundary of the system whose values are

determined from their initial values plus the upwind condition. This condition

is symbolized with a U, and will be explained more fully below. Finally, an

interior node, designated by I, is simply any node that is not on a boundary.

PresNodeTypes is the variable storing the node types with respect to

pressure. In this example, the pressures at the top of the system are held con-

stant, while all the other boundary nodes are set at constant mass fluxes (note

that the mass fluxes have units of kg/m2s). The interior nodes are marked I.

TempNodeTypes stores the node types with respect to temperature. In this

example, the nodes at the top of the system have all been set to the upwind

boundary condition, while the side boundary nodes are set to constant heat

fluxes (J/m2s), and the bottom nodes are set to constant temperatures. SaliN-

odeTypes stores the node types with respect to salinity, and these are set

similarly to those for the temperature, except that the bottom nodes are set at

constant salt mass fluxes instead of constant salinity values. Now that the node

types have been set, the specific numerical values for these node types must be

recorded. PresBoundVals stores the pressure boundary values. Interior nodes

are marked 0 simply to reflect again that they are not on the boundary (so these

nodes are not set to initial pressures of 0 – the initial pressures for the internal

nodes were specified in InFile0 already). The top pressures in this example are

held fixed at 260.D5 Pa (260 bars), while the sides and bottom of the system

7



are set to zero mass flux. TempBoundVals stores the temperature boundary

values. The temperatures at the top of the system have been set to initial values

of 100◦C (consistent with the initial values set in InFile0); however, if fluid flows

from inside the system out of the top, the temperature at the top node with

change to the temperature of the node just below it. For instance, if the node

immediately below the upstream condition node were, say, 105◦C, then fluid

flowing upward out of the system would cause the temperature in the top node

to change from 100◦C to 105◦C. The upstream condition is meant to represent

the fact that changes upstream in a moving fluid influence what happens down-

stream. If fluid flows from the top of the system downward, then the top node

will shift back to its initial value of 100◦C. The bottom temperatures have been

set to a constant 200◦C, while the sides of the system are thermally insulated

(heat fluxes = 0). SaliBoundVals stores the salinity boundary values. The

top nodes are set at initial values of 3.2 wt% NaCl, with the upstream condition

governing later values. The sides and the bottom of the system are set at zero

salt flux.

3 The Output Files

There are five output files to which FISHES writes as it runs, numbered from

0 to 4. In them are stored the initial problem setup information, the bulk

fluid properties, the fluid velocities, the individual phase properties, and the

surface heat fluxes, respectively. A detailed description of each follows, and

the example OutFiles provided in the run directory are those that result from

running FISHES with the example InFiles.

3.1 OutFile0

This output file is a summary of all the user-defined variables that have been

read into memory for the simulation. If one desires to check that the input files

were read in properly with the appropriate values, then this file is the one to

8



check. Everything in this file is labeled fairly obviously; however, below some

variables, like the porosity for instance, the phrase Slice: 1 will be seen. This

phrase is just to indicate that the Y dimension is set to 1 if the code were set

up to handle three dimensions, then there would be more than one slice of X-Z

values for each variable.

3.2 OutFile1

This file stores the phase indices, liquid volume saturation, bulk densities, pres-

sures, temperatures, bulk salinities, and bulk enthalpies generated during the

simulation. Again, one can ignore the Slice: 1 comments. Note that the phase

indices are labeled numerically as

-2 = liquid + halite

-1 = pure liquid

0 = two-phase (liquid + vapor) mixture

1 = pure vapor

2 = vapor + halite

The code uses these numbers internally to identify which phase is present at

each node.

3.3 OutFile2

In addition to the velocities being vectors, they are stored at the interfaces

between nodes, which makes reading the velocity data file slightly more com-

plicated than reading the others. Velocities are listed in OutFile2 for the liquid

and vapor phases separately, and for the X and Z directions separately. In our

example setup, there are three nodes in the X direction, and so there are two

interfaces in the X direction between nodes. In OutFile2, the phrase X direction

interface slice: 1 indicates that what follows is the velocity at the first interface

in the X direction. Similarly, X direction interface slice: 2 means that what

follows is the velocity at the second interface in the X direction. Because there

are four nodes in the Z direction, there are three interfaces between nodes in

9



this direction. Hence, there are three slices each for each velocity component in

that direction, and for each phase.

3.4 OutFile3

OutFile3 is arranged like OutFile1, except that it stores the individual vapor

and liquid salinities, enthalpies, and densities instead of the corresponding bulk

properties.

3.5 OutFile4

OutFile4 contains information about the surface heat fluxes – this file is a very

recent addition and the module that generates it needs more work. Hence, its

contents should only be used if you know what you’re doing, i.e., you understand

what the code is doing to get these numbers.

4 Auxiliary Programs

There are five auxiliary programs that will make creating the input files and

reading/plotting the results from the output files much easier than otherwise,

especially for problem setups that require a large number of nodes. They are

described below.

4.1 InHelp

This program is located in the InHelper folder under the run directory. Before

one can run InHelp, the first time it must be compiled. To compile it using

g95, for instance, type g95 *.f95 from the InHelper directory, and then type mv

a.out InHelp. Finally one may need to type chmod 711 InHelp to apply the

proper permissions to this file. One can then run it in unix/linux by typing

./InHelp from that directory. Upon running this program, a menu will appear

followed by a prompt for the menu selection. The example InFile0 and InFile1

are already in this directory, and these are the files InHelp reads when it is run.

10



If the user changes, for example, the permeabilities, and then asks InHelp to

save, the result will be files just like the example InFile0 and InFile1 except with

altered permeability information. When the program writes output, it writes

the output to the files InFile0.new and InFile1.new so that if a mistake has been

made the original InFile0 and InFile1 will not be affected. By experimenting

with the options in the menu and viewing the output, it should become clear

what functions most of the these options perform. Here is an example. Suppose

the user selects option 3, to modify the permeabilities. A new menu will then

appear, with the options “1 select starting and ending rows/columns” and “2

return to main menu”. Selecting 1 leads to the prompt “starting row:”, and after

specifying the starting row, one is asked to specify the ending row, the starting

column, and the ending column. Essentially, a square of nodes is being specified,

which will then be filled in with values determined by the user. Suppose for

starting row, ending row, starting column, and ending column one has entered

1, 3, 2, 3, respectively. Then the region of space selected will look like the

following (where o stands for a node, and x stands for a selected node):

o x x

o x x

o x x

o o o

After selecting the nodes that will have altered permeabilities, the user is

then given the choices constant (C), linear left to right (L), or linear top to

bottom (T). Choosing C will set all the selected node permeabilities to one

constant value. Choosing L will cause the permeabilities to vary linearly with

distance from west to east, and choosing T will cause them to vary linearly with

distance from the top toward the bottom of the system.

4.2 analyze

After FISHES has been run, or even while it is still running (as long as there has

been some output to the output files), one can run a script in the run directory

11



called analyze by typing ./analyze. This script will copy all the input and output

files into the Analysis directory, and run a FORTRAN program called MatGen

there, which will convert the FISHES output into matrices that can be read by

Matlab (make sure to compile MatGen and rename the a.out file to MatGen

before running analyze the first time). The resulting files will have the extension

.dat and be named according to which values are stored in them. For example,

the temperatures from OutFile1 will be stored in a data file called Tempr.dat.

4.3 Plot0

Once the FISHES output files have been converted to files readable by Matlab,

there is a plot program in the Analysis directory called Plot0.m. This program

is a Matlab program and hence must be run from Matlab; it will plot all the

output from FISHES so far, determining automatically whether the output is

for 1D or 2D results, and plotting the results in the appropriate format. It can

be executed by typing Plot0(0) from the Matlab prompt. For one dimensional

plots, one can overlay output from several different times by using Plot(1) for

the first plot, executing analyze again, and using Plot(0) thereafter.

4.4 surfsamp

To use surfsamp, first copy the input and output files into the surfsamp directory.

Then run the FORTRAN program surfsamp, which will create files that are

readable by Matlab, with the surface salinities and temperatures above a given

column of nodes together with their output times. After running this program,

typing SurfSample from Matlab will produce plots of the surface vent salinities

and temperatures vs. output times. A horizontal line on the salinity plot refers

to equivalent normal seawater salinity (3.2 wt% NaCl).

4.5 pickup

Sometimes it is necessary to take the last output from one simulation and use it

as the starting input for the next simulation. The FORTRAN program pickup in

12



the run directory will do this task automatically. It simply reads the last output

from the output files and re-writes InFile0 with these values as the initial values.

If the user has any questions about how to use this program or any of the others

mentioned in this user file, he/she is encouraged to contact the author via email.

References

[Lew07] K.C. Lewis. Numerical modeling of two-phase flow in the sodium

chloride-water system with applications to seafloor hydrothermal sys-

tems. PhD thesis, Georgia Institute of Technology, Atlanta, GA, 2007.

[LL09] K.C. Lewis and R.P. Lowell. Numerical modeling of two-phase flow

in the NaCl-H2O system: Introduction of a numerical method and

benchmarking. Journal of Geophysical Research, 114:B05202, 2009.

[Pat80] S.V. Patankar. Numerical Heat Transfer and Fluid Flow (series in

computational methods in mechanics and thermal sciences). Taylor &

Francis Publishers, 1980.

13


