
Guide to Installing and Using FISHES

Kayla C. Lewis

February 8, 2010



1 Purpose

The following sections are intended to constitute a practical guide to installing

and using FISHES. Readers interested in the underlying theory should consult

[LL09], [Pat80], and [Lew07].

1.1 Installation

FISHES is written in FORTRAN 90, and the programs mentioned in this guide

for visualizing the output of FISHES require ipython (interactive python) along

with the matplotlib and numpy libraries. The code is compatible with the

free FORTRAN 90/95 compilers g95 and gfortran, which can be gotten from

http://www.g95.org and via the “synaptic” package manager in debian/ubuntu,

respectively; it has also been successfully compiled and run using the Intel c©

FORTRAN compiler, ifort. It is recommended that one of these compilers be

used, because different FORTRAN compilers have minor differences that can

lead to a program compiling on one of them but not another. There are g95

binaries at the above-mentioned website for linux, solaris, windows, etc, and

one can even compile the compiler itself from source code if one wishes – see the

website for details. In linux, g95 uses the GNU C compiler gcc, and if there are

any problems getting g95 to work, it is most likely because one is lacking the

correct version of gcc. Finally, the installation/compiling program uses GNU

make.

Once ipython, matplotlib, numpy, make, and the FORTRAN compiler have

been installed, it is time to install FISHES and the auxiliary programs that come

with it. First, unzip the file fishes.zip in your chosen directory. A subdirectory

called “fishes” will be created, which will hereafter be referred to as the “main

directory”. Second, open the Makefile in the main directory with your favorite

text editor, and change the path specified by the variable FISH SRC to the path

of the main directory. Also, change the variable CC to refer to the compiler you

wish to use. Finally, exit the text editor and enter:

2



make install

to compile and install the software. When modifying the code in the main

directory, typing simply “make” will re-compile and install only this source

code. To run FISHES itself, one can type ./fishes from the run directory, or

./fishrun from the main directory.

2 User Input Files

When FISHES runs, it reads the information in the files InFile0 and InFile1

to determine the problem geometry, the initial and boundary conditions, and

other simulation controlling variables like the time step, iteration tolerances,

etc. These user-defined variables will now be described, and they will each be

printed in bold to facilitate ease of reference.

2.1 InFile0

A simple example of an InFile0 is in the FISHES/run/ directory (there is also

a backup of this file, InFile0.example, in case the user would like to review this

material later after having replaced the original example files). This file can

be read with one’s favorite text editor (the author’s choice is vim, with syntax

highlighting turned on). Regarding units in these files, SI units are used exclu-

sively, except that salinity is in wt% NaCl and not wt fraction NaCl (although

internally FISHES converts the input salinities from wt% to wt fractions).

The first variables in the file are NumNodesX, NumNodesY, and

NumNodesZ - these are the number of nodes in the X (west-east), Y (north-

south), and Z (up-down) directions. FISHES is currently only designed to han-

dle up to two dimensions, so that Y should always be set to 1. In this example,

there are 100 nodes total, with 10 nodes from west to east and 10 nodes from top

to bottom. The variable SuppressScreenMessages should be set to Y if one

wishes to run FISHES as a background process and does not want FISHES to

send output to the screen while running; otherwise, this variable should be set

3



to N. When SuppressScreenMessages is set to Y, the code will send all output

to a file called FISHES.log, located in the run directory.

The next line starts with the variable TimeStepIncr. This variable is for

situations such that the user wants the time step to increase with time as the

code runs – sometimes many changes happen quickly at once when a simulation

starts, and the time step should be set comparatively small during these times,

while later it may be possible to obtain meaningful results with a higher time

step. For example, setting TimeStepIncr to 2 will double the time step size

after each time marching step completes. Setting TimeStepIncr to 1 keeps the

time step the same (i.e., multiplies it by 1 after each time marching step),

and this value is the standard one. The code will not allow the time step to

increase to more than the amount specified by the variable MaxDelta t (see

this section, below), and will hold the time step at this value automatically if

TimeStepIncr has been applied enough times that the time step would have risen

above this value. Dispersivity and CorrelationLength are there for modeling

mechanical salt dispersion, but currently the code has numerical dispersion in

the salt transport large enough such that physical dispersion should not be

added, and the Dispersivity should be set to zero1. These variables are there in

case the author decides to increase the accuracy of salt transport in the future.

BoundValGradual should be set to N unless one wants to have the bound-

ary values associated with the pressure, temperature, or salinity equation along

a side of the system change gradually with time. If this variable is set to Y, then

the next six variables must also be specified, namely, the side of the system on

which the boundary is located (BoundSide), the equation to which the bound-

ary conditions apply (EquationType), the number of the node at which to start

along the chosen side (StartBoundNode), the number of the node at which to

stop along the chosen side (EndBoundNode), the amount by which to increase

the boundary values lying between these nodes2 (IncreaseAmount), and the

interval of time over which this increase should take place (IncreaseTime) (in

1When the Dispersivity is set to zero, the value of CorrelationLength is immaterial.
2The nodes specified by StartBoundNode and EndBoundNode are included.

4



seconds)3.

FISHES performs iterations in order to solve the pressure and temperature

equations4. MaxPIter is the maximum number of pressure equation itera-

tions allowed before the code prints a warning and halves the time step size -

10,000 iterations is the default value. MaxTIter is the maximum number of

temperature equation iterations allowed (default value, 1000).

The variable TimeStepCheck determines whether the code automatically

checks the appropriateness of the time step size. If the velocity of a fluid phase

somewhere in the system is high enough that the fluid traverses more than

one control volume during a single time step, the code will both produce a

warning and divide the time step by two. The code take similar actions if the

line-by-line matrix solver cannot reach a convergent solution for the pressure or

the temperature, or if local or global mass, salt, or energy conservation is not

satisfied to a large degree (i.e., to within 5% error).

The next variables in InFile0 allow the user to specify different print frequen-

cies and time step sizes for different intervals of simulation time. The number

under “Number of time periods below to execute before stopping” refers to the

number of such predefined intervals the user desires to employ. In this exam-

ple, there is only one such period. The variables TotalTime, PrintFreq, and

Delta t refer to the simulation time interval, print frequency, and time step

size, respectively. In this example, the simulation will run for 1.61E7 s (∼0.5

yrs), printing output every 3.2E6 s (∼0.1 yr), with a time step size of 1.E5 s.

The variables MaxDelta t and MinDelta t specify the maximum and min-

imum time step sizes allowed (in seconds), respectively, during the blocks in

which they appear.

RockDens, CpRock, RockThermCond, and Grav are the variables that

store the rock density, rock specific heat at constant pressure, rock thermal con-

ductivity, and gravitational acceleration, respectively. HaliteDens, CpHalite,
3If BoundValGradual is set to N, the values of the next six variables are immaterial.
4The matrix equation governing salt transport does not need to be solved iteratively (see

[LL09]).

5



FluidThermCond, and SaltChemDiff store the halite (solid salt) density,

halite specific heat, fluid thermal conductivity, and salt chemical diffusivity, re-

spectively. CpHalite is not currently used for anything in the code it is there for

if the author decides to include the formation of halite in a more rigorous way in

the future. XNodeWidths, YNodeWidths, and ZNodeWidths store the

node widths in the X, Y, and Z directions. The C stands for “Constant” and

means that the number below it will be the value for every node in the corre-

sponding direction. For instance, in this InFile0, all the nodes in the X direction

are set to a width of 10 meter, while all those in the Z direction are set to widths

of 10 meters. Alternatively, F stands for Free and when there is an F, all the

numbers listed below are read into individual nodes. For example, suppose that

the X widths line were as follows: Node widths in the x direction(m)

F

0.1

1.0

1.0

In this case, the western-most nodes would have west-east widths of 0.1 meters,

while next two columns would have west-east widths of 1.0 meter.

Porosity and Permeability, Temperature, Pressure, and Salinity all

store the initial values of the variables after which they are named (Salinity

refers to the bulk salinity). Again, a “C” means that all the nodes will be set

to the constant value of the number immediately below C. For instance, all the

nodes have been set to have a porosity of 0.1 (or 10%). The pressures, on the

other hand, are set using the “F” descriptor, and the pressure values are listed

afterward corresponding to the nodes in which they will be stored. There is a

special descriptor “S” available for the pressure, and this option tells FISHES

to calculate the hydrostatic pressure profile corresponding to a given seafloor

pressure. For two-dimensional geometries, a single row of surface pressures

should follow the S descriptor; for one-dimensional cases, a single number is

expected.

6



2.2 InFile1

InFile1 contains information specifying the types of boundary conditions and

the boundary values for solving the temperature, pressure, and bulk salinity

equations. FISHES recognizes four types of nodes: constant boundary, flux

boundary, upwind boundary, and interior nodes. A constant boundary node is

a node that is both on the boundary of the system and that is to be held at a fixed

value for the entire simulation, and such node types are designated with a C. A

flux boundary node is a node that is both on the boundary and that specifies

a constant flux for the entire simulation. It is signified by the letter F. Upwind

boundary nodes are nodes on the boundary of the system whose values are

determined from their initial values plus the upwind condition. This condition

is symbolized with a U, and will be explained more fully below. Finally, an

interior node, designated by I, is simply any node that is not on a boundary.

PresNodeTypes is the variable storing the node types with respect to

pressure. In this example, the pressures at the top of the system are held con-

stant, while all the other boundary nodes are set at constant mass fluxes (note

that the mass fluxes have units of kg/m2s). The interior nodes are marked I.

TempNodeTypes stores the node types with respect to temperature. In this

example, the nodes at the top of the system have all been set to the upwind

boundary condition, while the side boundary nodes are set to constant heat

fluxes (J/m2s), and the bottom nodes are set to constant temperatures. SaliN-

odeTypes stores the node types with respect to salinity, and these are set

similarly to those for the temperature, except that the bottom nodes are set at

constant salt mass fluxes instead of constant salinity values. Now that the node

types have been set, the specific numerical values for these node types must be

recorded. PresBoundVals stores the pressure boundary values. Interior nodes

are marked 0 simply to reflect again that they are not on the boundary (so these

nodes are not set to initial pressures of 0 – the initial pressures for the internal

nodes were specified in InFile0 already). The top pressures in this example are

held fixed at 260.D5 Pa (260 bars), while the sides and bottom of the system

7



are set to zero mass flux. TempBoundVals stores the temperature boundary

values. The temperatures at the top of the system have been set to initial values

of 100◦C (consistent with the initial values set in InFile0); however, if fluid flows

from inside the system out of the top, the temperature at the top node with

change to the temperature of the node just below it. For instance, if the node

immediately below the upstream condition node were, say, 105◦C, then fluid

flowing upward out of the system would cause the temperature in the top node

to change from 100◦C to 105◦C. The upstream condition is meant to represent

the fact that changes upstream in a moving fluid influence what happens down-

stream. If fluid flows from the top of the system downward, then the top node

will shift back to its initial value of 100◦C. The bottom temperatures have been

set to a constant 200◦C, while the sides of the system are thermally insulated

(heat fluxes = 0). SaliBoundVals stores the salinity boundary values. The

top nodes are set at initial values of 3.2 wt% NaCl, with the upstream condition

governing later values. The sides and the bottom of the system are set at zero

salt flux.

3 The Output Files

There are five output files to which FISHES writes as it runs, numbered from

0 to 4. In them are stored the initial problem setup information, the bulk

fluid properties, the fluid velocities, the individual phase properties, and the

surface heat fluxes, respectively. A detailed description of each follows, and

the example OutFiles provided in the run directory are those that result from

running FISHES with the example InFiles.

3.1 OutFile0

This output file is a summary of all the user-defined variables that have been

read into memory for the simulation. If one desires to check that the input files

were read in properly with the appropriate values, then this file is the one to

8



check. Everything in this file is labeled fairly obviously; however, below some

variables, like the porosity for instance, the phrase Slice: 1 will be seen. This

phrase is just to indicate that the Y dimension is set to 1 if the code were set

up to handle three dimensions, then there would be more than one slice of X-Z

values for each variable.

3.2 OutFile1

This file stores the phase indices, liquid volume saturation, bulk densities, pres-

sures, temperatures, bulk salinities, and bulk enthalpies generated during the

simulation. Again, one can ignore the Slice: 1 comments. Note that the phase

indices are labeled numerically as

-2 = liquid + halite

-1 = pure liquid

0 = two-phase (liquid + vapor) mixture

1 = pure vapor

2 = vapor + halite

The code uses these numbers internally to identify which phase is present at

each node.

3.3 OutFile2

In addition to the velocities being vectors, they are stored at the interfaces

between nodes, which makes reading the velocity data file slightly more com-

plicated than reading the others. Velocities are listed in OutFile2 for the liquid

and vapor phases separately, and for the X and Z directions separately. In our

example setup, there are three nodes in the X direction, and so there are two

interfaces in the X direction between nodes. In OutFile2, the phrase X direction

interface slice: 1 indicates that what follows is the velocity at the first interface

in the X direction. Similarly, X direction interface slice: 2 means that what

follows is the velocity at the second interface in the X direction. Because there

are four nodes in the Z direction, there are three interfaces between nodes in

9



this direction. Hence, there are three slices each for each velocity component in

that direction, and for each phase.

3.4 OutFile3

OutFile3 is arranged like OutFile1, except that it stores the individual vapor

and liquid salinities, enthalpies, and densities instead of the corresponding bulk

properties.

3.5 OutFile4

OutFile4 contains information about the surface heat fluxes – this file is a very

recent addition and the module that generates it needs more work. Hence, its

contents should only be used if you know what you’re doing, i.e., you understand

what the code is doing to get these numbers.

4 Auxiliary Programs

There are five auxiliary programs that will make creating the input files and

reading/plotting the results from the output files much easier than otherwise,

especially for problem setups that require a large number of nodes. They are

described below.

4.1 inhelp

This program is located in the inhelper folder under the run directory. One

can run this program by typing ./inhelp from the inhelper directory. Upon

execution, a menu will appear followed by a prompt for the menu selection.

The example InFile0 and InFile1 are already in this directory, and these are

the files inhelp reads when it is run. If the user changes, for example, the

permeabilities, and then asks inhelp to save, the result will be files just like

the example InFile0 and InFile1 except with altered permeability information.

When the program writes output, it writes the output to the files InFile0.new

10



and InFile1.new so that if a mistake has been made the original InFile0 and

InFile1 will not be affected. By experimenting with the options in the menu

and viewing the output, it should become clear what functions most of the

these options perform. Here is an example. Suppose the user selects option 3,

to modify the permeabilities. A new menu will then appear, with the options

“1 select starting and ending rows/columns” and “2 return to main menu”.

Selecting 1 leads to the prompt “starting row:”, and after specifying the starting

row, one is asked to specify the ending row, the starting column, and the ending

column. Essentially, a square of nodes is being specified, which will then be

filled in with values determined by the user. Suppose for starting row, ending

row, starting column, and ending column one has entered 1, 3, 2, 3, respectively.

Then the region of space selected will look like the following (where o stands for

a node, and x stands for a selected node):

o x x

o x x

o x x

o o o

After selecting the nodes that will have altered permeabilities, the user is

then given the choices constant (C), linear left to right (L), or linear top to

bottom (T). Choosing C will set all the selected node permeabilities to one

constant value. Choosing L will cause the permeabilities to vary linearly with

distance from west to east, and choosing T will cause them to vary linearly with

distance from the top toward the bottom of the system.

4.2 makeplot

After FISHES has been run, or even while it is still running (as long as there

has been some output to the output files), one can run a script in the run

directory called makeplot by typing ./makeplot. This script will copy all the

input and output files into the plot directory, and run a FORTRAN program

called matgen there, which will convert the FISHES output into matrices that

11



can be read by python. The resulting files will have the extension .dat and

be named according to which values are stored in them. For example, the

temperatures from OutFile1 will be stored in a data file called Tempr.dat.

4.3 flowplot

Once the FISHES output files have been converted to files readable by python,

there is a plot program in the plot directory called flowplot.py. This program

is a python program and should be run from ipython; it will plot all the output

from FISHES so far, determining automatically whether the output is for 1D

or 2D results, and plotting the results in the appropriate format. It can be

executed by using the following commands in the ipython shell:

import flowplot as fp

fp.flowplot(0)

The argument 0 tells flowplot to plot the temperature and pressure along with

bulk fluid properties; passing 1 instead would result in a plot of individual phase

properties; 2 would result in a velocity vector plot overlying a temperature

contour plot. Regarding this last option, liquid velocities would be shown in

black, while vapor velocities (if any vapor were present) would be shown in

blue. Please note that if flowplot.py is modified, the changes will not take effect

unless the command “reload(fp)” is executed first.

4.4 surfsamp

To use surfsamp, change to the surfsamp directory and run the corresponding

FORTRAN program by entering ./surfsamp, which will create files that are

readable by python, with the surface salinities and temperatures above a given

column of nodes together with their output times. After running this program,

typing the following commands from ipython will produce plots of the surface

vent salinities and temperatures vs. output times:

run plotsurf.py

12



A horizontal line on the salinity plot refers to equivalent normal seawater salinity

(3.2 wt% NaCl).

4.5 pickup

Sometimes it is necessary to take the last output from one simulation and use it

as the starting input for the next simulation. The FORTRAN program pickup in

the run directory will do this task automatically. It simply reads the last output

from the output files and re-writes InFile0 with these values as the initial values.

If the user has any questions about how to use this program or any of the others

mentioned in this user file, he/she is encouraged to contact the author via email.

5 Tips for Running Simulations

Several things must be kept in mind when running simulations with FISHES.

Here is a representative list:

• Most importantly, FISHES cannot handle abrupt changes in fluid prop-

erties in space or time. Hence, it’s important to work gradually up to a

problem with the boundary conditions of interest by starting with a hy-

drostatic scenario, gradually changing the boundary conditions, and up-

dating the input files via pickup. Note that in the past, one had to guess

the initial hydrostatic pressure distribution, but such is no longer the case.

Using the S descriptor causes the code to automatically calculate the hy-

drostatic pressure distribution (see section 2.1 above). Furthermore, one

can use the BoundValGradual option to cause boundary values to change

gradually during a simulation (see section 2.1).

• If fluid properties vary too sharply over a region, the iterations for solv-

ing the pressure, temperature, or combined pressure/temperature/salinity

equations may fail to converge, or other kinds of errors may result. If

TimeStepCheck is set to Y (see section 2.1), then the code will attempt

to remedy the situation by cutting the time step in half; however, if the

13



time step is cut too many times in a row, FISHES will print an error mes-

sage to this effect and terminate. Use input values that are more evenly

distributed when this happens. Also, using a smaller time step from the

start of the simulation may help.

• Simulations often need small time steps in the beginning, but not as small

as the simulation progresses. Therefore, it is often very helpful to use the

TimeStepIncr option (see section 2.1), as well as having more than one

time period set at the bottom of InFile0.

• Grid resolution studies are important! Start a new problem with a rel-

atively coarse grid, and rerun the simulation with refinements until the

results do not change appreciably.

• Use the messages that the code prints as it runs to guide you if you run

into trouble. If you are running FISHES on a remote machine, you can

use the SuppressScreenMessages variable to tell the code to create a log

file (see section 2.1).

• If you are stuck, and need to contact the author, please include the input

and output files along with the messages that FISHES created while the

simulation was running.

• If you find/fix any errors, please let me know, so that the code can be

maintained properly!

References

[Lew07] K.C. Lewis. Numerical modeling of two-phase flow in the sodium

chloride-water system with applications to seafloor hydrothermal sys-

tems. PhD thesis, Georgia Institute of Technology, Atlanta, GA, 2007.

[LL09] K.C. Lewis and R.P. Lowell. Numerical modeling of two-phase flow

in the NaCl-H2O system: Introduction of a numerical method and

benchmarking. Journal of Geophysical Research, 114:B05202, 2009.

14



[Pat80] S.V. Patankar. Numerical Heat Transfer and Fluid Flow (series in

computational methods in mechanics and thermal sciences). Taylor &

Francis Publishers, 1980.

15


