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[1] In their study of upper mantle structure beneath the Parana Basin of SE Brazil, Snoke and
James [1997] concluded, on the basis of a linearized least squares inversion (LLSI) of surface wave
dispersion data, that a strong (5% contrast) low-velocity zone (LVZ) beginning at a depth less than
~150 km was not required to fit the data. They were unable to establish a quantitative estimate,
however, on the maximum depth at which such a LVZ could be resolved by their data. Sambridge
[1999a, 1999b] has introduced the Neighbourhood Algorithm (NA), a direct search method for
nonlinear inversion which can be tuned to extract information from an ensemble of models in
addition to finding a single best fit model. Applying NA to the Brazilian dispersion data quantifies
the statistics of the ensemble of models classified as “acceptable” based on a data misfit criterion
and a smoothness constraint. The NA best fit model is not significantly different from the LLSI best
fit model, but the analysis of the ensemble of models provides new insights regarding how well
constrained the model is. Synthetics runs show that for this data set, our modeling procedures could
resolve a strong LVZ that began at a depth of 120 km but could not rule out such an LVZ beginning
at a depth of 180 km. INDEX TERMS: 7218 Seismology: Lithosphere and upper mantle; 3260
Mathematical Geophysics: Inverse theory; 8120 Tectonophysics: Dynamics of lithosphere and
mantle—general; 8162 Tectonophysics: Rheology—mantle; 7255 Seismology: Surface waves and

free oscillations; KEYWORDS: direct search methods for nonlinear inversion, surface waves,
continental lithosphere-asthenosphere rheology, Neighbourhood Algorithm

1. Introduction

[2] For oceanic paths, using linearized least squares inversion
(LLSI), the depth to the low-velocity zone (LVZ) which character-
izes the asthenosphere, can be found if observed surface wave
dispersion is well constrained to periods of at least 80 s [e.g.,
Woods and Okal, 1996; Priestley and Tilmann, 1999]. In con-
tinental shield regions the lithosphere is far thicker than under
oceans, perhaps in excess of 250 km [e.g., VanDecar et al., 1995;
Ritsema and van Heijst, 2000; James et al., 2001].

[3] Even for oceanic paths, LLSI provides little information
about the range of physically acceptable models which fit the data,
and because of the heavy damping required to stabilize the iteration
process the model resolution and variances produced by LLSI are
not easily interpreted. The conclusion drawn by Snoke and James
[1997] in their LLSI for the S wave structure beneath the eastern
Parana Basin in SE Brazil is that no strong (5% velocity contrast)
LVZ beginning at a depth shallower than ~150 km was required to
fit their surface wave dispersion data. The objective of this paper is
to see if further constraints on the velocity structure beneath the
Parana Basin can be obtained by using an alternative procedure to
LLSI to analyze the interstation dispersion-velocity data set of
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Snoke and James [1997]. The procedure used is the Neighbour-
hood Algorithm (NA), developed by Sambridge [1999a, 1999b].
NA is a direct search (i.e., derivative-free) method for nonlinear
inversion, which can be used to extract information from an
ensemble of models in addition to finding a single best fit model.

[4] In sections 2 and 3 we review briefly the LLSI study of
Snoke and James [1997] and give an outline of the NA. We then
present results from the application of NA to the dispersion data
set, and we follow this with synthetics tests in which both NA
and LLSI are applied to synthetic dispersion data sets generated
from velocity structures with well-defined LVZs at depths of 120
and 180 km.

2. Data

[s] The surface wave study presented by Snoke and James
[1997] is based on data from the Brazilian Lithosphere Seismic
Project: an array of portable broadband seismic stations operated in
south central Brazil between 1992 and 1995, with the objective of
mapping heterogeneity in the lithosphere and upper mantle in the
region and correlating it with the principal tectonic provinces. The
entire region, including the Andean basement, is composed of what
is loosely termed the Brazilian shield, a patchwork of cratonic
nuclei of varying ages, most of which were amalgamated during
late Proterozoic time (Brasiliano/Pan-African, circa 600 Ma), but
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some of which in the west and south were accreted through mid-
Paleozoic time during the continuing consolidation of the Gond-
wana supercontinent [see Brito Neves and Cordani, 1991; Ramos,
1988]. The interstation paths of interest here traverse the eastern
part of the intracratonic Parana Basin (Figure 1). The present study
is based on four events of the seven used by Snoke and James
[1997]. Three events were removed because it was decided that
they were not pure paths [Assumpgdo et al., 2002]: the eastern
stations for those paths were in either the the Brasilia Belt (a
mobile belt of Proterozoic terranes mobilized during collision of
the Parana Basin and Sdo Craton in Brasiliano time circa 600 Ma)
or the Sdo Francisco craton (composed of Archean and Paleopro-
terozoic rocks).

[6] Two other studies using data from the Brazilian Litho-
sphere Seismic Project have some overlap with our study region:
a three-dimensional (3-D) body wave tomography analysis
[VanDecar et al., 1995], and a 3-D surface wave tomography
study [van der Lee et al., 2001]. The data used in our studies
have better vertical resolution than either of the tomography
studies for depths shallower than ~200 km depth. A receiver
function analysis for the crustal structure near several Brazilian
stations [Assumpg¢do et al., 2002] helped constrain the crustal
structure for our surface wave studies.

[7] The data in the Brazilian Lithosphere Seismic Project were
recorded on broadband STS-2 seismometers which have a flat
velocity response from 0.008 to 50 Hz with no clipping for the
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Figure 1. (top) Four interstation paths in the Parand Basin used

for surface wave analysis. (Three are between the same two
stations.) (bottom left) Fundamental mode Rayleigh and Love
phase and group velocities. Symbols are the data (averaged over up
to four events for each period and mode), and lines are calculated
from the best fit LLSI velocity model. Each dispersion velocity
datum is a composite from up to four events, weighted by the
inverse of the estimated variances. (bottom right) Best fit S wave
model (LLSI-PAR) calculated using LLSI. The LLSI-PAR velocity
model has 43 constant velocity layers, and the damping used is
0.1 times the the maximum eigenvalue of the data kernel matrix.
Also shown for reference is the continental PEM model (PEM-C)
[Dziewonski et al., 1975].
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events used. The results shown in Figure 1 are found by applying
Herrmann’s [1987] SURF package first to find interstation phase
and group velocities for both Love and Rayleigh waves and then to
invert these for the best fitting S wave velocity structure using
LLSI. Because of the high damping required to stabilize the
inversion, the error estimates calculated using LLSI for model
LLSI-PAR are <0.004 km/s for all depths and decrease for depths
>150 km, both inappropriate results.

[8] There is one difference in the data preparation between this
study and that of Snoke and James [1997]. In the earlier work, each
interstation velocity set was culled to the same set of discrete
periods but no averaging was done over events. Thus, for our four
events, there could be as many as four dispersion values for a given
mode and period. Here we use the direct search NA to generate a
total of 10,000 velocity models in each run. To reduce the
computational cost of forward modeling, we decrease the number
of dispersion values by averaging over events for each mode and
period. The dispersion data used in the present study are as shown
in Figure 1. We ran LLSI with the original (74) and also with the
modified (44) dispersion data, and results did not differ signifi-
cantly. (There was also no significant change in the final model
after reducing the number of events from seven to four.) We refer
the reader to Snoke and James [1997] for further details on the data
preparation and LLSI inversion.

3. The Neighbourhood Algorithm

[9] The Neighbourhood Algorithm (NA), introduced by
Sambridge [1999a, 1999b], is a direct search method for nonlinear
inversion. This approach is applicable to a wide range of inversion
problems, particularly those where the relationship between the
observables (data) and the unknowns (a finite set of model param-
eters) is rather complex and derivatives may be expensive or
cumbersome to calculate, e.g., fitting of seismic waveforms for
earth structure or source parameters.

[10] The approach is divided into two stages. In the first, known
as the search stage, one samples a multidimensional parameter
space for combinations of parameters (models) which provide
satisfactory fit to observed data. In the second, known as the
appraisal stage, one extracts information from the complete ensem-
ble of models collected in the search stage, e.g., to provide
estimates of resolution and variance. The search algorithm is in
the same class of technique as genetic algorithms (GA) and
simulated annealing (SA) [Davis, 1987], in that it uses randomized
decisions to drive the search and avoids the need for calculation of
derivatives of the data misfit function. These techniques are often
associated with global optimization problems. The NA differs from
previous techniques in that it requires just two control parameters to
be tuned, and the search process is directly driven by only the rank
of models with respect to the data misfit criterion, and not the misfit
itself. This allows considerable flexibility because any combination
of data fit criteria, or other information, can be used to rank models.
Recently, the NA has been applied to hypocenter location
[Sambridge and Kennett, 2001] and seismic source characteriza-
tion [Kennett et al., 2000; Marson-Pidgeon et al., 2000].

[11] The NA makes use of simple geometrical concepts to
search a parameter space. The basic idea is illustrated with a
simple example: Figure 2 shows results from a two-parameter
problem where the NA has been used to maximize a multi-peaked
fitness function in a plane. Figure 2 (top left) shows an initial set of
10 models distributed quasi-randomly. At each stage the entire
parameter space is partitioned into a set of Voronoi cells (nearest-
neighbor regions), one about each previously sampled model. In
this example the distance metric is a simple L2 norm. The Voronoi
cells are used to guide subsequent sampling in a randomized
fashion. As iterations proceed, the algorithm concentrates sampling
in promising regions. Figure 2 (top right) shows the resulting
Voronoi cells after 100 new model realizations, and Figure 2
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Figure 2. The first three panels show three stages of a
Neighbourhood Algorithm search. (top left) Initial 10 uniformly
randomly distributed model realizations and their corresponding
Voronoi cells. (top right) Voronoi cells of the first 100 models
generated by the NA plus the original 10. (bottom left) Voronoi
cells after the generation of 500 new models. (bottom right) True
fitness landscape. Darker shading indicates higher fitness. With
increased sampling in NA, the concentration is much higher in the
regions of higher fitness, all four maxima are found by NA.

(bottom left) after 500 new models have been added. Clearly, all
four prominent maxima are well sampled. The global maximum
was located after 442 samples.

[12] Voronoi cells form a piecewise continuous approximation
to the data misfit function at each iteration which is based on all
previous sampling. (The data misfit is treated as constant inside
each cell.) This neighborhood approximation surface gradually
drives the sampling into one or more better (lower misfit) regions
simultaneously. Sambridge [1999a] has demonstrated that even
though the NA is based on simple geometrical principles, it results
in a highly self-adaptive search and remains computationally
practical even in much higher dimensional spaces (e.g., 10—100).
It has also been demonstrated that it is capable of handling misfit
surfaces containing multiple minima [Sambridge, 1999a, 2001].

4. Analysis

[13] NA requires a parameterization of model space, a data set,
a method of forward modeling to calculate data for a given model,
a definition of the data misfit, two tuning parameters (n,, and n,),
and N, the number of iterations. The procedure is as follows:

1. In the initialization stage, an initial set of n, models are
generated uniformly randomly and a data misfit measure is
calculated for each model, i.e., forward modeling is performed 7,
times.

2. In the generation stage, Voronoi cells (see above) are defined
about each of the n, models with lowest misfit, and a uniform
random walk is performed inside each Voronoi cell to generate a
total of n, new models; that is, n/n, models are generated in each
cell.

3. In the forward modeling stage, the data misfit is calculated
for the 1, new models generated in step 2 and the procedure returns
to step 2. As more models are introduced, the size and shape of the
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Voronoi cells automatically adapt to the previously sampled
models.

[14] Steps 2 and 3 constitute an iteration which is then repeated
N times resulting in a total of (N + 1) X n, model evaluations. The
character of the parameter space search will be influenced by the
choice of n, and n, In general, larger n, and/or n,, the more
exploratory the search will be, skipping over local minima but only
slowly increasing the concentration of sampling. As the tuning
parameters are reduced, the search will be quicker to converge
but more akin to a series of local searches and more likely to be
entrapped in local minima of the data misfit function. Sambridge
[1999a] offers some advice on tuning of the two parameters. A
slight variation of the above procedure is employed here: We
allow the number of new models to vary between the initializa-
tion and iteration stages; that is, we generate more models during
initialization than at each subsequent iteration. This was generally
found to improve performance because the initial set of Voronoi
cells are constructed around a larger (uniformly distributed) initial
ensemble. The tuning parameters for the three runs discussed here
are ng; = 500, ny, = 100, n,. = 50, and N = 95, giving a total of
10,000 model evaluations. (Here we define ng; to be the value of
ng in stage 1.)

[15] The model parameters used in this study are eight, over-
lapping, weighted averages over the velocity-depth model (Figure 3)
which represent perturbations of a base model (here the LLSI-PAR
model shown in Figure 1). The dispersion values do not go to low
enough periods to resolve fine structure in the crust, so the crust is
represented by a single “box car” which gives uniform weighting.
The crustal structure, including the Moho depth (42 km), is felt to be
well constrained by the LLSI analysis and the receiver function study
mentioned above [Assumpg¢do et al.,2002]. Test runs were made with
a model parameterization allowing for a varying Moho, but the
resulting models did not differ significantly from those presented
here. The overlapping box car and triangles over the mantle depths
allow for smooth perturbations of the base model; first-order dis-
continuities within the mantle cannot be modeled with this param-
eterization. (Even though the top and bottom of the LVZ in model
PEM-C shown in Figure 1 are shown as first-order discontinuities, no
evidence for such sharp changes has ever been presented, and
because the periods of surface waves considered here are all above
10 s, such sharp discontinuities could not be resolved even if they
were there.) The perturbations go to zero at 400 km depth, which is
well beyond the resolvable depth for this data set. Ranges for these
parameters increase from +0.6 km/s for the crustal velocities (param-
eter 1) to £1.75 km/s for parameter 8, which has a maximum
perturbation at 320 km depth. Herrmann’s [1987] SURF routines
are used for the forward modeling.

[16] The data misfit (¢) for each model realization is the length
of the error vector with each element weighted by the inverse of
that datum’s variance. Dispersion velocities calculated from sur-
face wave velocities are constrained by the averaged velocity over
depth ranges, rather than the detailed shape, so models with an
unphysical “S” shape of velocity versus depth can often be found
with low misfits. To down-weight such models, we add a penalty
(P) to the calculated misfit if successive parameters from among
parameters 2—8 have opposite signs and differ by more than a
preset value. The total misfit is then

where N is the number of dispersions (44 in these runs), o; and
¢; are the observed and calculated values, respectively, for the ™
dispersion, o; is the estimated standard deviation for o;, and the
penalty P is zero unless any of the successive parameters in the
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Figure 3. Interpolation model parameters (termed basis functions by Nolet [1990]) used in the NA analysis.

range 2—8 for that model realization is >0.175 for that run. In
that case, P = 5.

5. Results

[17] Figure 4a shows the full ensemble of 10,000 models
produced by NA for the Parana dispersion data set projected onto
the first two parameters: the perturbation in the crustal structure
and the perturbation in the uppermost mantle velocity. The con-
centration of sampling increases in the regions of better data fit, but
the full range of values between the hard limits is sampled.

[18] Figure 4b is an enlargement of the central portion of
Figure 4a. Here the shading scale has been adjusted to cover the
range of data misfits in this subregion. The correlations of data fit
with position indicate that the V; crust parameter is more tightly
constrained than is the velocity of the uppermost mantle.
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[19] Figure 5(top) shows the 71 models and their predicted
dispersion curves for all models from the NA run which have
misfits <0.01235. This value for the cutoff misfit was chosen so
that all models would fit within the estimated errors for the
Rayleigh phase velocities, which are the best constrained for
this data set. (See Figure 5(top left).) Figure 5(bottom) shows
the calculated dispersions and the ‘“average” velocity-depth
model (NA-PAR) calculated from the acceptable models along
with calculated standard deviations at several depths for the
71-model ensemble. Even though the dispersion kernels have
little resolving power for depths greater than ~200 km for
this data set, the envelope of velocities for acceptable models
does not broaden systematically with depth as found in other
studies [e.g., Lomax and Snieder, 1994]. This indicates that
given the smoothness constraint and the assumption that the
model perturbation goes to zero at depths >400 km, the range
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Figure 4. The full ensemble of models produced by the NA for the Parana dispersion data set projected onto a pair
of parameter axes (parameters 1 and 2). Each model is represented by a dot grey scale coded by data misfit. (a)
Parameter ranges shown are the prescribed hard limits and the full range of calculated misfits. (b) As in Figure 4a but
for a restricted range in parameter values (box in Figure 4a) and in misfits.
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Figure 5. (top) Predicted dispersions and models for the

ensemble of all models from the NA run total of 10,000
evaluations which have a misfit <0.01235. Notation as in
Figure 1. (bottom) Average model (NA-PAR) and its dispersion
calculated from the ensemble shown above. The misfit is 0.0121,
just slightly higher than the 0.0120 misfit which is the smallest for
the full ensemble. The LLSI-based model, LLSI-PAR, is included
for comparison.

in velocities is constrained at all depths for the ensemble of
acceptable models.

[20] The LLSI-based model, LLSI-PAR, is included in Figure
5(bottom right) for comparison. The misfits are the same. On the
basis of the estimated errors for NA-PAR, the two velocity models
are not significantly different.

6. Synthetics Runs

[21] To check our methodology and our interpretation of results,
we applied both LLSI and NA to dispersion-velocity data sets
which are exact fits for two models with well-defined LVZs. The
first one is model PEM-C42, based on the continental PEM-C
model of Dziewonski et al. [1975] (included in Figure 1) which has
a 100-km-thick LVZ starting at a first-order discontinuity at 120
km depth with a 5% velocity contrast. We replaced the two-layer
35-km-thick crust in PEM-C with the 42-km-thick Paranna 2-layer
crust overlain by a sedimentary layer, and we replaced the PEM-C
velocities below the bottom of the LVZ (220 km depth) with the
velocities for those depths from LLSI-PAR. The second model,
PEM-C42R, is the same as PEM-C42 except the LVZ is shifted to
run from 180 to 280 km depths, and the same procedure was
followed as for PEM-C42. The synthetic sets of dispersion values
are for the same periods as the Parand data and have the same
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estimated errors, but the average values give an exact fit for PEM-
C42 or PEM-C42R.

[22] We began the synthetics runs by running LLSI for synthetic
data sets, starting in both cases with the LLSI-PAR velocity
structure (shown above in Figures 1 and 5) as the initial model.
The inversion was significantly more stable than for the real data
case, so damping could be reduced to 0.0001 times the maximum
eigenvalue compared with 0.1 for the real data. The LLSI best fit
models (LLSI-PEM and LLSI-PEMR) were used as the reference
models for the NA runs. The same model parameterization and
tuning parameters are used as in the NA application to the real data,
and, as before, 10,000 models were generated for each run.

[23] Figure 6 shows results for the PEMC-42 and PEMC-42R
synthetics runs. As with the real data runs, our ensemble of
acceptable models was a misfit cutoff that included all from among
the 10,000 models with Rayleigh phase velocity dispersions which
fit within the range of the plotted estimated error bars.

[24] For both synthetics runs the models with the lowest misfit
are the same as the best fit LLSI models and are indistinguishable
from the ensemble-averaged models. Because of the small damp-
ing required for the LLSI runs on the synthetic data the estimated
errors for the mantle S-wave velocities are ~10 times as large as
for the LLSI runs for the real data, and the estimated errors are
similar in size to those calculated for the NA ensemble-averaged
models. Figure 7 shows the ensemble-averaged models compared
with the “true” models and NA-PAR, the NA ensemble-averaged
model for the data run.

[25] From Figure 7, we deduce the following:

1. NA and LLSI can image equally well both the top and
bottom of the LVZ for the PEM-C42 data set (Figure 7a) and, with
poorer resolution, the velocity decrease at 180 km depth for the
PEM-C42R data set (Figure 7b).

2. On the basis of the shapes of the velocity-depth curves and
the estimated errors in the velocities, the Parana data derived
NA-PAR model is significantly different from models representing
an LVZ starting at 120 km depth (Figure 7a). Although the data do
not require an LVZ starting at 180 km depth, the velocity structure
at this depth is at the limit of resolution for this data set (Figure 7b).

7. Discussion

[26] Because of the way they were implemented in our analyses,
neither LLSI nor NA can resolve a first-order discontinuity within
the mantle. As mentioned above, this may be of little practical
importance, as there is no evidence that the lithosphere-astheno-
sphere boundary is a sharp interface. For the period range in our
data set a first-order discontinuity cannot be resolved, but a model
with such a discontinuity could be found to be consistent with the
data by an appropriate choice of the reference model and the data
parameterization.

[27] Our inversions do not find models which give a good fit to
the middle periods for the Love phase velocities. Separate NA runs
inverting for only the Rayleigh dispersion, produced effectively the
same model as shown in Figure 5. Inversions for only the Love
dispersion produced relatively poorly constrained models, which
follows from the fact that the estimated errors for the Love
dispersion velocities are larger than for the Rayleigh dispersion
velocities. The ensemble-averaged model for the Love-only inver-
sion has a significantly higher velocity lid in the mantle from the
Moho down to ~70 km depth. That model produces an extremely
poor fit for the Rayleigh group velocities above 35 s period and a
poor fit for the midperiod Rayleigh phase velocities.

[28] Point measurements of azimuthal anisotropy based on SKS
splitting have been made at the three stations used in this study, but
nowhere else along the paths [James and Assumpgdo, 1996]. On
the basis of their results we estimate path effects from azimuthal
anisotropy to be at most a few percent. In addition, azimuthal
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Figure 6. As in Figure 5(top) except the dispersion velocities “data” are generated by (top) the PEM-C42 model

and (bottom) the PEM-C42R model.

anisotropy cannot explain differences between Rayleigh and Love
models. The inability to model precisely both Love and Rayleigh
dispersion may very well be produced by radial anisotropy [e.g.,
Freybourger et al., 2001], but there are no data at present to
constrain the degree of radial anisotropy.

[29] Other effects not taken into account in our modeling of the
data include lateral heterogeneity, as well as variations in depth of
anelasticity, density, and Poisson’s ratio. While none of these is
very well constrained for this region, nothing among published
results indicates that such effects could have more than a second-
order effect on the velocity structure in the upper mantle.

[30] It is easy to quantify the relative importance from among
the data by doing NA runs with data subsets, as is discussed above
for comparisons of Love-only and Rayleigh-only inversions. By

varying the parameterization scheme or the definition of misfit, one
can concentrate the analysis on different parts of the model space
and interpret the results more easily with NA than with LLSI.

[31] The calculated standard deviations for “average” models
in the NA runs give only relative estimates of the velocity spread as
a function of depth. Even though NA searches the full parameter
space (e.g., Figure 4a), if the number of iterations exceeds a certain
value, there may still be ““saturation” resulting in an ever increas-
ing number of models near one which are indistinguishable within
sets of model parameterizations. This is discussed by Sambridge
[2001]. Another approach, not done in this study, is to get estimates
of uncertainty using Bayesian appraisal [Sambridge, 1999b].

[32] Although beyond the scope of this study, it is relevant to
conjecture about how one can explain the decoupling between the
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continental plate and the deeper mantle, if there is no well-defined
LVZ in the upper mantle,. We list here three possible explanations:

1. The rheology at depth beneath continental shields may be
such that the low viscosities required to accommodate plate motion
may not be correlated with low velocities.

2. The differential shearing may take place over an extended
depth range with either small contrasts in viscosity between the
lowest part of the continental root and the underlying mantle or a
sequence of very narrow LVZs (which would not be resolvable).

3. As suggested by VanDecar et al. [1995], the whole upper
mantle may move with the plate, so that any decoupling takes place
at a greater depth, perhaps in the transition zone.

8. Concluding Remarks

[33] Earlier we had applied genetic algorithms (GA), another
fully nonlinear global optimization technique, to this data set
[Zhang et al., 1998]. As found by Sambridge [1999a, 1999b], in
his comparisons between NA and GA for a receiver function
data set, NA is more easily tuned, the distribution of final
solutions in NA is less dependent on the starting solution, and
NA produces a more uniform sampling of the ensemble of
acceptable models.

[34] For this Brazilian dispersion-velocity data set we have
shown that NA confirms the conclusion drawn by Snoke and
James [1997] that the data are best fit by velocity models which do
not have a well-defined LVZ starting at depths shallower than
~150 km. The ensemble of acceptable models determined through
NA provide insights about the deeper velocity structure not easily
discernible using LLSI for less-than-perfect data. In particular, the
standard deviations calculated for the ensemble-averaged models
from NA are easier to interpret than those calculated using LLSIL.
To constrain the velocities for greater depths requires data with
small estimated errors at longer periods than were available for
these studies.

[35] Acknowledgments. We extend our thanks to David James for
useful discussions and to the two reviewers along with the Associate Editor
for helpful suggestions.
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