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Figure 1: Top: Four interstation paths in the 
Paranß Basin used for surface-wave analysis. 
(Three are between the same two stations.) 
Bottom left: fundamental-mode Rayleigh and Love 
Phase and Group velocities. Symbols are the data, 
and lines are calculated from the best-fit LLSI 
velocity model. Each dispersion velocity datum is a 
composite from up to four events, weighted by the 
inverse of the estimated variances.   Bottom right: 
Best-fit S-wave model (PARANA) calculated using 
LLSI (solid) compared with the continental PEM 
model (dashed) for the mantle. The PARANA 
velocity model has 43 constant-velocity layers, and 
the damping used was 0.1 the the maximum 
eigenvalue of the data kernel matrix. 
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Figure 2:  The three stages of a Neighborhood 
Algorithm search. The top left panel shows the 
initial 10 uniformly randomly distributed points 
and their corresponding Voronoi cells. The top 
right panel shows the Voronoi cells of the first 
100 points generated by the NA, and the bottom 
left panel shows the Voronoi cells for 500 points. 
The bottom right panel shows the true fitness 
landscape, darker shades are higher fitness. With 
increased sampling in NA, the concentration is 
much higher in the regions of higher fitness, and 
all four maxima are found by NA. 

NA requires a parameterization of model space, a data 
set, a method of forward modeling to calculate data 
for a given model, a definition of the data misfit, three 
tuning parameters (nsi,  ns, and  nr), and  N, the 
number of iterations. The procedure is as follows: 
1  Initialization stage: First, an initial set of  nsi  

models are generated uniformly randomly and a 
data misfit measure is calculated for each model. 

2  Generation stage: Next, Voronoi cells (see below) 
are defined about each of the  nr  models with 
lowest misfit, and a uniform random walk is 
performed inside each Voronoi cell to generate a 
total of  ns  new models, i.e.  ns/nr  are generated 
in each cell. 

3  Forward modeling stage: The data misfit is 
calculated for the  ns  new models generated in 
step 2 and the procedure returns to step 2. As more 
models are introduced the size and shape of the 
Voronoi cells automatically adapt to the previously 
sampled models. 

Steps 2-3 constitute an iteration which is then repeated 
N times resulting in a total of  nsi +Nns  model 
evaluations.. An example (not for this problem) is 
shown in Fig. 2. 

Voronoi cells are nearest neighbor regions as defined by a 
distance norm. For any set of points (models) in a space with 
any number of dimensions (unknowns), the Voronoi cells are 
unique, space filling and non-overlapping. They can be used to 
partition the model space into a series of neighborhoods. 

Procedure 

The model parameters used in this study are 
overlapping, weighted averages over the velocity-
depth model (Fig. 3). The data misfit for each 
model realization is the square of the length of the 
error vector with each element weighted by the 
inverse of that datums variance. An additional 
smoothing constraint is imposed by adding 5.0 to a 
misfit if successive parameters from among 
parameters 2 through 8 have opposite signs and 
differ by more than a preset value (0.175 for these 
runs). For the two NA runs discussed here, the 
tuning parameters are  nsi = 500,  ns = 100,  nr = 
50, and  N = 95 giving a total of 10,000 model 
evaluations. Herrmann's SURF routines are used for 
the forward modeling. 

Figure 3: Interpolation model parameters: Of the 
eight parameters, two are box car in shape, 
resulting in uniform weighting of perturbations to 
the base-model (the PARANA model) throughout 
the depth range, and the remaining six are 
overlapping triangles. Ranges for these parameters 
increase from  ±0.6 km/s for the crustal velocities 
(parameter 1) to  ±1.75 km/s for parameter 8. 
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Figure 4: The full ensemble of 10,000 models 
produced by the NA for the Paranß dispersion data 
set projected onto two pairs of parameter axes. 
Each model is represented by a dot color coded by 
data misfit, and the parameter ranges shown are 
the prescribed hard limits. For both cases shown, 
the concentration of sampling increases in the 
regions of better data fit, but the full range of 
values between the hard limits are sampled. The 
spread in velocities at depths greater than 150 km 
depth would increase if the smoothing constraint 
were relaxed in the misfit calculation, but the 
additional models would not be physically 
realizable.
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Figure 5: Plot as in the left-hand panel in Fig. 4 
for a reduced range in parameter values and in 
misfits. The correlations of data fit indicate 
that the VS Crust parameter is more tightly 
constrained than the velocity of the uppermost 
mantle. 

Figure 6: Top: Predicted dispersions and models for 
the ensemble of all models from the NA run total of 
10,000 evaluations which have a misfit less than 
0.0111. Notation as in Fig. 1. Bottom: Average 
model and its dispersion calculated from the 
ensemble shown above. The misfit is 0.0107, which 
would rank it as second among the full ensemble. 
Calculated (relative) standard deviations for the 
average velocity model are included. 

Figure 7: The trend in the top right-hand panel in 
Fig. 6 and the calculated average model from that 
ensemble (NA-PAR) indicate lower velocities below 
150km depth than implied by the best fit LLSI 
model (PARANA). 

A Calibration Run 

To check our methodology and interpretation of results, we applied the 
same analysis to a data set for a model with a well-defined LVZ  model 
PEM-C42. The synthetic set of dispersion values is identical to the Paranß 
data except that the average values give an exact fit for the PEM-C42 
velocity model. The same model parameterization and tuning 
parameters are used, so 10,000 models were generated. Plots in Fig. 8 
(below) are as in Fig. 6, with a misfit cutoff of 0.0013. (An exact fit 
cannot be found because our scheme of model parameterization cannot 
produce a first-order discontinuity for depth ranges parameterized by 
overlapping triangles.) This run shows that if an LVZ existed as in PEM-
C42, it could be resolved by a dispersion data set such as that obtained 
in the Paranß Basin study.

Figure 8: As in Fig. 6 except the dispersion velocities are generated 
by the PEM-C42 model. The misfit for the summary model is 
0.00049, which would rank it as the third best among the 10,000 
models generated by NA. Model NA-PEM looks like a low-pass-
filtered representation of PEM-C42 for the mantle. If we had gotten 
such results for our data, we would have chosen a different model 
parameterization than in Fig. 2 to allow for a first-order mantle 
discontinuity. 

Neighborhood Algorithm

Because of the nonlinearities in the model-data relationships, the 
damping required to stabilize the inversion and smoothing 
constraints, the LLSI provides little easily interpreted information 
about model variance or resolution or the ensemble of acceptable 
models. Sambridge has introduced the Neighborhood Algorithm 
(NA), a direct search method for nonlinear inversion in a multi-
dimensional parameter (model) space, which can be tuned to 
extract information from an acceptable ensemble of models in 
addition to finding a single best-fit model. Here we apply NA to 
the S&J data set to see if it can provide more information about 
the velocity structure at depth beneath the eastern Parana Basin. 

Results

S62A-13
Constraints on the S-wave Velocity Structure in a Continental Shield From Surface-Wave Data:
Comparing Non-linear Least-Squares Inversion and the Direct-Search Neighborhood Algorithm

Background

Using linearized least-squares inversion 
(LLSI), the depth to the top of the low-
velocity zone (LVZ) beneath oceans can be 
found along paths for which surface-wave 
dispersion is well constrained. The same 
techniques may give inconclusive results 
when applied to continental shield regions. 
The conclusion drawn by Snoke & James 
(S&J) in their LLSI for the S-wave structure 
beneath the eastern Paraná Basin in central 
Brazil is that there is no resolvable Low 
Velocity Zone (LVZ) to at least 150 km 

Conclusions
Applying a Neighborhood Algorithm analysis to dispersion 
velocity data provides insights not easily seen from LLSI 
analyses. It is easy to test the relative importance from among 
the data by doing NA runs with data subsets.  By varying the 
parameterization scheme or the definition of misfit, one can 
concentrate the analysis on different parts of the model 
space.  For this application, NA confirms the LLSI conclusion 
that no LVZ begins shallower than 150 km depth, but that an 
LVZ might begin between 150 and 200 km


