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In order to explore velocity structure in the crust based on OBS (Ocean Bottom 
Seismogram), it is necessary to detect seismic signals reflected and/or refracted waves 
in the crust from the OBS data contaminated with relatively large direct water wave 
and its multiples. In this paper, we propose the new methods based on the time series 
and spatial-temporal decompositions of the data.  
 
1. Extraction by Time Series Modeling 
Based on the time series modeling (Kitagawa and Takanami, 1985; 
Takanami, 1991; Kitagawa and Higuchi, 1998), we consider the model 

                                    (1) nnnn sry ε++=

where, n , n  and n  represent the a direct wave and/or its multiples 
traveled in the water, the reflected and/or refracted waves generated in the 
submarine underground structure and the observation noise, respectively. To 
separate these three time series, it is assumed that both r  and  are 
expressed by the autoregressive (AR) models  

r s ε

n ns

               r ,   ,                   (2) ∑
=

− +=
m

i
ninin ura

1
∑
=

− +=
l

i
ninin vsbs

1

where, the AR orders ,  and the AR coefficients i  and  are 
unknown and n ,  and  are white noise sequence with , 

 and , respectively. 
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The models in (1) and (2) can be joined together in the state space model form 

nnn GwFxx += −1 ,                      (3) nnn Hxy ε+=

with the state vector defined by .  T
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If all the parameters m ,  and iil ba ),,,,( σττθ = 21  are given, the state 
vector n  can be estimated by the Kalman filter and the fixed interval 
smoother (Anderson and Moore, 1979). Although they are really unknown, 
they can be estimated by maximizing the log-likelihood of the model defined 
by 

x

∑∑
==

−−−=
N

n n

n
N

n
nm r
rN

1

2

1 2
1log

2
12log

2
)( επθl

2T

               (4) 

where 1| −nnnn  and 1| −nnn  with 1| −nn  and 1| −nn  being 
the mean and the variance covariance matrix of the one-step-ahead predictor 
of the state obtained by the Kalman filter (Jones, 1980). The variance of AR 
model for the water, reflected and/or refracted waves, 1  and 

−= Hxyε σ+= HHVr x V

2τ 2τ 2  are 
related to the amplitude of the waves and are actually time varying. To put it 



concretely, the variance is almost zero before the water, reflected and/or 
refracted waves arrives, becomes large depending on the amplitude of the 
wave and then goes back to zero as signal dies out. These variance 
parameters play the role of signal to noise rations, and the estimation of 
these parameters is the key to the success of the time series decomposition. 
In a self-organizing state space model (Kitagawa, 1998), the original state 
vector  is augmented with the time-varying parameters as nx
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We assume that the parameter changes according to the random walk model 
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where nj,  is the Gaussian white noise with , jnj . The state space 
model for this extended state can be expressed in nonlinear state space 
model form. Then by applying the Monte Carlo filter / smoother (Kitagawa, 
1996), we can estimate the state n  from the observations. Since the 
extended state n  contains the original state n  and the parameters, this 
means that the marginal posterior distributions of the state and the 
parameters can be obtained simultaneously and automatically. 
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We applied this single channel time series decomposition to the entire 1560 
channels. As far as we investigate the results channel by channel, it looks 
very reasonable. However, if we plot the expected series on one figure, the 
on-set times of the series are not so smoothly changing, suggesting the 
possibility of improving the estimates by incorporating the spatial structure 
of the signal. In this paper, we consider a method of incorporating 
spatial-temporal structure. 
 
2.  Decomposition by Spatial-Temporal Modeling 
The real time series observed at OBS contains signals of a direct and 
multiples water waves, reflected, refracted waves and observation noise 
(Kuwano, 2000). Figure 1 shows the raw data recorded by OBS-4 as an 
example. 

Fig.1. The 1560 air-gun traces recorded by OBS-4 

Just beneath the air-gun, the direct 
wave (1.48km/sec) that travels 
through the water arrives first and 
dominates in the time series. 
However, since the velocity of the 
water in the solid structure is larger 
than it, in our present case, the 
reflected and the refracted waves 
arrive before the water waves for 
the offset distance larger than 
approximately 1.4 km and 14 km, 



respectively. At each OBS, 1560 time series were observed, with the location 
of the explosion shifted by 200m. Therefore the consecutive two series are 
cross-correlated and by using the structure assumed by Kuwano (2000), it is 
expected that we can detect the information that was difficult to obtain from 
a single time series. The moveout, namely the difference of the arrival times 
between two consecutive time series, computed for each wave type and for 
some offset distance, D.  
 

Table 1. Wave type and moveout of arrival times for various offset distance. 
 

Wave type        Offset Distance (km) 
               0    5     10   15    20  
wave(0)       0.6  16.5  16.5  16.7  16.7 
wave(000)     0.2  14.5  14.5  15.8  16.0 
wave(00000)   0.1   8.0  12.0  14.2  15.0 
wave(01)           10.5  10.0  10.1   9.9 
wave(0121)    0.2   7.5   7.1   7.2   7.1 
wave(012321)  0.1   3.8   3.6   3.6   3.5 

 
The computed moveout of the waves that travel on the surface between two 
layers are constants independent on the offset distance D. Meanwhile, for 
the water waves that travel in the water, the amount of the moveout-time 
gradually increase with the increase of the offset distance D, and converges 
to approximately 17 for distance D > 5 km. This points out that the arrival 
time is approximately a linear function of the distance, D > 5km. Taking into 
account of this time-lag structure, and temporally ignoring the time series 
structure, we consider the following spatial model: 

jnjknjn vss ,1,, += −− ,                    (7) jnjnjn wsy ,,, +=

where  is the moveout of the water wave or reflected and refracted wave, 
namely the difference of the arrival times between channels  and 

k
1−j j .  

By defining the state vector by , we obtain the state space 
representation, ,  . 

T
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Therefore, if the moveout  is given, we can easily obtain estimates of the 
“signal” (water, reflected, and/or refrated waves) by the Kalman filter and 
smoother.  If one value of  dominates in one region, we can estimate it by 
maximizing the localized log-likelihood. However, in actual data, several 
different waves may appear in the same time and the same channel. To cope 
with this situation, we consider a mixture-log model defined by 
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where  is the one step ahead predictor of the jn,  defined by 
1,,, jknkjn  and kjn ,,  is the mixture weight at time  and channel 
kjns ,,ˆ
−−

s
ˆ = ss α n j .  
In the recursive filtering, this mixture weight can be up dated by  
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Spatial-Temporal Model： 

jnjnjnjn sry ,,,, ε++=                             (10) 

where jn, , jn, , and jn,  denote a direct water wave and its multiples, 
reflected / refracted wave and the observation noise component in channel j. 
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respectively.  On the other hand, by considering the delay structure 
discussed in the previous subsection, we also use the following spatial 
models,              

r
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Here the moveout  and  are actually function of the wave type and the 
distance D (or equivalently the channel 

k h
j ). 

By an approximate estimation algorithm combining the filtering and 
smoothing algorithms in time and space (channel), we can obtained the 
decomposition of the data shown in Figure 1. Figure 2 shows the results of 
the decomposition. The left plot shows the extracted direct and its multiple 
water wave.  The right plot shows the extracted reflection and the 
refraction waves. Several waves are enhanced by this decomposition.

Fig.2. Extracted water waves (left) and reflected and/or refracted waves (right). Air gun 972-1071 traces, Sampling 
rate = 1/125 second, data length n=2000.  

 
Conclusion 
Time series model and spatial-temporal model for extracting reflection or 
refraction waves from OBS data are shown. In time series decomposition, a 
state space model based on AR representations of both direct/multiple water 
waves and reflection and refraction waves traveled in the crust are used. 
Unknown parameters of the models are estimated by the maximum 
likelihood method and by the self-organizing state space model. In spatial 
modeling the delay structure of various types of waves are considered. This 
spatial model is combined with the time series model and approximated 
method of spatial-temporal smoothing is obtained. 


